香港黄色三级片|麻豆视传媒黄短视频免费|我要吃瓜爆料黑料|caonl免费观看|国产精品日本一区二区在线看麻豆|考研的姐姐91制片厂|久久精麻豆蜜桃一起操|精品香蕉网站久久久|艾秋麻豆剧传媒在线中网|美腿丝袜偷拍自拍,兔子先生免费高清在线播放,中文字幕免费视频,国产精品v欧美精品v日韩精品

Improved Faster Region-Based Convolutional Neural Networks (R-CNN) Model Based on Split Attention for the Detection of Safflower Filaments in Natural Environments

發(fā)布時(shí)間:2025-01-16 來源:科學(xué)技術(shù)處 作者:張振國 瀏覽次數(shù):1156


Abstract:The accurate acquisition of safflower filament information is the prerequisite for robotic picking operations. To detect safflower filaments accurately in different illumination, branch and leaf occlusion, and weather conditions, an improved Faster R-CNN model for filaments was proposed. Due to the characteristics of safflower filaments being dense and small in the safflower images, the model selected ResNeSt-101 with residual network structure as the backbone feature extraction network to enhance the expressive power of extracted features. Then, using Region of Interest (ROI) Align improved ROI Pooling to reduce the feature errors caused by double quantization. In addition, employing the partitioning around medoids (PAM) clustering was chosen to optimize the scale and number of initial anchors of the network to improve the detection accuracy of small-sized safflower filaments. The test results showed that the mean Average Precision (mAP) of the improved Faster R-CNN reached 91.49%. Comparing with Faster R-CNN, YOLOv3, YOLOv4, YOLOv5, and YOLOv6, the improved Faster R-CNN increased the mAP by 9.52%, 2.49%, 5.95%, 3.56%, and 1.47%, respectively. The mAP of safflower filaments detection was higher than 91% on a sunny, cloudy, and overcast day, in sunlight, backlight, branch and leaf occlusion, and dense occlusion. The improved Faster R-CNN can accurately realize the detection of safflower filaments in natural environments. It can provide technical support for the recognition of small-sized crops.

Keywords: object detection; safflower filaments; faster R-CNN; ROI Align; ResNest-101


Improved Faster Region-Based Convolutional Neural Networks (R-CNN) Model Based on Split Attention for the Detection of Safflower Filaments in Natural Environments.pdf

編輯:安崇霄  審核人:

友情鏈接

  • 智慧新農(nóng)大
  • 官方抖音
  • 官方微博
  • 官方微信
  • 新聞網(wǎng)移動版